Influenza Monthly Epidemiology Report, NSW

March 2017

This report describes the surveillance for influenza and other respiratory pathogens, undertaken by NSW Health to date. This includes data from a range of surveillance systems.

1. Summary

- Influenza activity increased during the latter part of March and remained higher than usual for this time of year. Influenza A(H3N2) remained the most common strain identified.
- The rate of influenza like illness (ILI) presentations to selected emergency departments was low and consistent with inter-seasonal activity.
- The proportion of deaths attributed to pneumonia and influenza remained low.

2. Hospital Surveillance

NSW emergency department (ED) surveillance for influenza-like illness (ILI) and other respiratory illnesses is conducted through PHREDSS [1].

The PHREDSS surveillance system uses a statistic called the ‘index of increase’ to indicate when ILI presentations [2] are increasing at a statistically significant rate. It accumulates the difference between the previous day’s count of presentations and the average for that weekday over the previous 12 months. An index of increase value of 15 is considered an important indicator for the start of the influenza season in NSW as it suggests influenza is circulating widely in the community.

In February 2017:

- The index of increase for ILI presentations was 4.4 at the end March, well below the seasonal threshold.
- ED presentations for ILI were within the historical range for this time of year (Figure 1).
- ED presentations for pneumonia [3] were also within the historical range (Figure 2).
- Pneumonia or ILI presentations which resulted in admissions to critical care units for ILI and pneumonia were within the usual range for this time of year (data not shown).
- Bronchiolitis presentations increased this month and were above the usual range for this time of year (Figure 3), particularly at the Singleton and Coffs Harbour hospitals (data not shown).
- The category combining all respiratory, fever and unspecified infection presentations was within the usual range for this time of year (data not shown).

[1] NSW Health Public Health Rapid, Emergency Disease and Syndromic Surveillance system. Centre for Epidemiology and Evidence, NSW Ministry of Health. Comparisons are made with data for the proceeding five years. Recent counts are subject to change. As of 31 March 2016, data from 60 NSW emergency departments (EDs), representing approximately 82% of ED visits in the 2015-16 financial year. The coverage of rural EDs is lower than the metropolitan EDs. Data shown represents unplanned presentations to hospital EDs.
Figure 1: Total weekly counts of ED visits for influenza-like illness, March 2017 (black line), compared with each of the 5 previous years (coloured lines), for 60 NSW hospitals.

![Graph showing weekly counts of ED visits for influenza-like illness from 2012 to 2017 for 60 NSW hospitals.]

Figure 2: Total weekly counts of ED presentations for pneumonia, March 2017 (black line), compared with each of the 5 previous years (coloured lines), for 60 NSW hospitals.

![Graph showing weekly counts of ED presentations for pneumonia from 2012 to 2017 for 60 NSW hospitals.]

Figure 3: Total weekly counts of Emergency Department visits for bronchiolitis, March 2017 (black line), compared with the 5 previous years (coloured lines).

![Graph showing weekly counts of ED visits for bronchiolitis from 2012 to 2017 for 60 NSW hospitals.]

Page | 2
3. Laboratory testing summary for influenza

Sentinel laboratory surveillance for influenza and other respiratory viruses is conducted throughout the year [4]. In March 2017:

- A total of 21,161 tests for respiratory viruses were performed at sentinel NSW laboratories and 882 (4.1%) were positive for influenza (Table 1).
- 724 specimens tested positive for influenza A – 78 of these tested positive for A(H3N2), 12 tested positive for influenza A(H1N1) and 634 were not typed further (Table 1, Figure 4 & 5).
- 158 cases of influenza B were reported (Table 1, Figure 4 & 5).

Influenza activity decreased in the first two weeks of March but has since continued to increase and it remains high for this time of year. While the number of tests requested each month continues to be higher than usual, the overall influenza test positivity rate (4.1%) was lower than the in February but still far exceeds previous rates for this time of year.

Respiratory syncytial virus (RSV) activity has started to increase with twice as many positive tests as the previous month. This fits with the historical pattern of increasing RSV activity during the autumn months and is consistent with the rise in emergency department presentations for bronchiolitis noted in the PHREDSS data.

Rhinovirus detections also increased and these were again the leading respiratory viruses identified by laboratories.

Table 1: Summary of testing for influenza and other respiratory viruses at sentinel NSW laboratories, 2 January to 2 April 2017.

<table>
<thead>
<tr>
<th>Month ending</th>
<th>Total Tests</th>
<th>Influenza A</th>
<th>Influenza B</th>
<th>Adeno</th>
<th>Parainf 1, 2 & 3</th>
<th>RSV</th>
<th>Rhino</th>
<th>HMPV **</th>
<th>Entero</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total (%)</td>
<td>H3N2 (%)</td>
<td>H1N1 pdm09 (%)</td>
<td>A (Not typed) (%)</td>
<td>Total (%)</td>
<td>Total (%)</td>
<td>Total (%)</td>
<td>Total (%)</td>
</tr>
<tr>
<td>29/01/2017</td>
<td>9981</td>
<td>489 (4.9%)</td>
<td>53 (10.8%)</td>
<td>4 (0.8%)</td>
<td>432 (88.3%)</td>
<td>92 (0.9%)</td>
<td>374</td>
<td>433</td>
<td>323</td>
</tr>
<tr>
<td>26/02/2017</td>
<td>12273</td>
<td>564 (4.6%)</td>
<td>78 (13.8%)</td>
<td>7 (1.2%)</td>
<td>479 (84.9%)</td>
<td>83 (0.7%)</td>
<td>430</td>
<td>458</td>
<td>719</td>
</tr>
<tr>
<td>02/04/2017*</td>
<td>21161</td>
<td>724 (3.4%)</td>
<td>78 (10.8%)</td>
<td>12 (1.7%)</td>
<td>634 (87.6%)</td>
<td>158 (0.7%)</td>
<td>684</td>
<td>1000</td>
<td>1830</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week ending</th>
<th>Total Tests</th>
<th>Influenza A</th>
<th>Influenza B</th>
<th>Adeno</th>
<th>Parainf 1, 2 & 3</th>
<th>RSV</th>
<th>Rhino</th>
<th>HMPV **</th>
<th>Entero</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total (%)</td>
<td>H3N2 (%)</td>
<td>H1N1 pdm09 (%)</td>
<td>A (Not typed) (%)</td>
<td>Total (%)</td>
<td>Total (%)</td>
<td>Total (%)</td>
<td>Total (%)</td>
</tr>
<tr>
<td>05/03/2017</td>
<td>3874</td>
<td>128 (3.3%)</td>
<td>20 (15.6%)</td>
<td>1 (0.8%)</td>
<td>107 (83.6%)</td>
<td>23 (0.6%)</td>
<td>112</td>
<td>158</td>
<td>256</td>
</tr>
<tr>
<td>12/03/2017</td>
<td>3828</td>
<td>111 (2.9%)</td>
<td>7 (6.3%)</td>
<td>2 (1.8%)</td>
<td>102 (91.9%)</td>
<td>38 (1.0%)</td>
<td>125</td>
<td>172</td>
<td>346</td>
</tr>
<tr>
<td>19/03/2017</td>
<td>4285</td>
<td>137 (3.2%)</td>
<td>15 (10.9%)</td>
<td>4 (2.9%)</td>
<td>116 (86.1%)</td>
<td>33 (0.8%)</td>
<td>121</td>
<td>214</td>
<td>37</td>
</tr>
<tr>
<td>26/03/2017</td>
<td>4334</td>
<td>150 (3.5%)</td>
<td>10 (6.7%)</td>
<td>1 (0.7%)</td>
<td>139 (92.7%)</td>
<td>30 (0.7%)</td>
<td>153</td>
<td>203</td>
<td>464</td>
</tr>
<tr>
<td>02/04/2017</td>
<td>4840</td>
<td>198 (4.1%)</td>
<td>26 (13.1%)</td>
<td>4 (2.0%)</td>
<td>168 (84.8%)</td>
<td>34 (0.7%)</td>
<td>173</td>
<td>253</td>
<td>727</td>
</tr>
</tbody>
</table>

Notes:
* 5 week period
** HMPV - Human metapneumovirus.

All samples are tested for influenza viruses but not all samples are tested for all of the other viruses listed.

[4]: Preliminary laboratory data is provided by participating sentinel laboratories on a weekly basis and are subject to change. Point-of-care test results have been included since August 2012 but serological diagnoses are not included. Preliminary laboratory data is provided by participating sentinel laboratories on a weekly basis and are subject to change. Participating sentinel laboratories: Pathology North (Hunter, Royal North Shore Hospital), Pathology West (Nepean, Westmead), South Eastern Area Laboratory Services, Sydney South West Pathology Service (Liverpool, Royal Prince Alfred Hospital), The Children's Hospital at Westmead, Australian Clinical Labs, Douglas Hanly Moir Pathology, Laverty Pathology, Medlab, SydPath, VDRLab to June 2016.
Figure 4: Weekly influenza positive test results by type and sub-type reported by NSW sentinel laboratories, 2 January to 2 April 2017.

Figure 5: Percent of laboratory tests positive for influenza A and influenza B reported by NSW sentinel laboratories, 2 January 2012 to 2 April 2017.
4. Community Surveillance

Influenza notifications by Local Health District (LHD)

During March there were 869 notifications (5 week period) of influenza confirmed by polymerase chain reaction (PCR) testing, higher than the 649 influenza notifications reported for March 2016.

Rates were low and similar across all LHDs. In the final week of the month Northern Sydney LHD reported a modest rise in cases and had the highest notification rate overall (Table 2).

Table 2: Weekly notifications of laboratory-confirmed influenza by Local Health District.

<table>
<thead>
<tr>
<th>Local Health District</th>
<th>Week ending 02 Apr 2017</th>
<th></th>
<th>Week ending 02 Apr 2017</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of notifications</td>
<td>Rate per 100 000 population</td>
<td>Number of notifications</td>
<td>Rate per 100 000 population</td>
</tr>
<tr>
<td>Central Coast</td>
<td>2</td>
<td>0.58</td>
<td>3</td>
<td>0.8</td>
</tr>
<tr>
<td>Hunter New England</td>
<td>34</td>
<td>3.66</td>
<td>20</td>
<td>2.18</td>
</tr>
<tr>
<td>Illawarra Shoalhaven</td>
<td>10</td>
<td>2.45</td>
<td>11</td>
<td>2.69</td>
</tr>
<tr>
<td>Mid North Coast</td>
<td>7</td>
<td>3.15</td>
<td>2</td>
<td>0.9</td>
</tr>
<tr>
<td>Murrumbidgee</td>
<td>1</td>
<td>0.41</td>
<td>1</td>
<td>0.55</td>
</tr>
<tr>
<td>Nepean Blue Mountains</td>
<td>6</td>
<td>1.56</td>
<td>5</td>
<td>1.23</td>
</tr>
<tr>
<td>Northern NSW</td>
<td>6</td>
<td>1.96</td>
<td>8</td>
<td>2.61</td>
</tr>
<tr>
<td>Northern Sydney</td>
<td>55</td>
<td>6.01</td>
<td>25</td>
<td>2.73</td>
</tr>
<tr>
<td>South Eastern Sydney</td>
<td>27</td>
<td>2.91</td>
<td>24</td>
<td>2.61</td>
</tr>
<tr>
<td>South Western Sydney</td>
<td>19</td>
<td>1.92</td>
<td>20</td>
<td>2.05</td>
</tr>
<tr>
<td>Southern NSW</td>
<td>1</td>
<td>0.47</td>
<td>1</td>
<td>0.47</td>
</tr>
<tr>
<td>Sydney</td>
<td>17</td>
<td>2.6</td>
<td>18</td>
<td>2.79</td>
</tr>
<tr>
<td>Western NSW</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0.89</td>
</tr>
<tr>
<td>Western Sydney</td>
<td>22</td>
<td>2.27</td>
<td>20</td>
<td>2.01</td>
</tr>
</tbody>
</table>

Note:
* All data are preliminary and may change as more notifications are received. Excludes notifications based on serology.

Influenza outbreaks in institutions

There were eight respiratory outbreaks reported this month in residential care facilities. Seven were caused by influenza strains (2 A(H3) and 5 influenza A not further typed), bringing the cumulative total for this year to 11 (Table 3). Influenza was excluded as the cause of the other outbreak.

People in older age-groups are at higher risk of infection from influenza A(H3N2) strains than from the influenza A(H1N1) strain. The influenza A(H3N2) strain predominated in 2012, 2014 and 2016 and was associated with an increase in influenza outbreaks in institutions, particularly residential aged care facilities (Table 3).

Table 3: Reported influenza outbreaks in NSW institutions, January 2010 to March 2017.

<table>
<thead>
<tr>
<th>Year</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017*</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of outbreaks</td>
<td>2</td>
<td>4</td>
<td>39</td>
<td>12</td>
<td>120</td>
<td>103</td>
<td>279</td>
<td>11</td>
</tr>
</tbody>
</table>

Notes:
* Year to date.
5. Deaths with pneumonia or influenza reported on the death certificate

Deaths registration data is routinely reviewed for deaths attributed to pneumonia or influenza. While pneumonia has many causes, a well-known indicator of seasonal and pandemic influenza activity is an increase in the number of death certificates that mention pneumonia or influenza as a cause of death.

The predicted seasonal baseline estimates the predicted rate of influenza or pneumonia deaths in the absence of influenza epidemics. If deaths exceed the epidemic threshold, then it may be an indication that influenza is beginning to circulate widely.

For the week ending 17 March 2017:

- In 2017 only 4 of the 9,857 death certificates mentioned influenza; all deaths have been in people aged over 65 years.
- A total of 773 of the 9,857 death certificates mentioned pneumonia.
- There were 0.95 influenza and pneumonia deaths per 100,000 NSW population, which was below the epidemic threshold of 1.28 per 100,000 population (Figure 7).

Figure 7: Rate of deaths classified as influenza and pneumonia per 100,000 NSW population, 2012 - 2017.

Source: NSW Registry of Births, Deaths and Marriages.

* Notes on interpreting death data:
1) The number of deaths mentioning “Pneumonia or influenza” is reported as a rate per 100,000 NSW population. Using the NSW population provides a more stable and reliable denominator than deaths from all causes. This is because pneumonia and influenza are known to contribute to increases in deaths from non-respiratory illnesses, such as deaths due to ischaemic heart disease. As the number of these deaths will increase with rises in influenza activity, the actual effect of influenza on mortality rates will be obscured if all-cause mortality is used as the denominator. This limitation is avoided by using the NSW population, which is relatively constant throughout the year, as the denominator.
2) Deaths referred to a coroner during the reporting period may not be available for analysis. Deaths in younger people may be more likely to require a coronial inquest. Therefore influenza-related deaths in younger people may be under-represented in these data.
3) The interval between death and death data availability is usually at least 7 days, and so these data are one week behind reports from emergency departments and laboratories. In addition, previous weekly rates may also change due to longer delays in reporting some deaths.
6. National and International Influenza Surveillance

National Influenza Surveillance
Although national influenza surveillance reports are not produced at this time of year, many jurisdictions are reporting increased influenza activity. Total national reports of laboratory-confirmed influenza in January were high compared to 2016 and to earlier years.

Global Influenza Update
The latest [WHO global update on 3 April 2017](https://www.who.int/influenza/updates/20170403/en/) provides data up to 19 March. WHO reports that influenza activity in the temperate zone of the northern hemisphere continued decrease. Worldwide, influenza A(H3N2) and influenza B viruses were predominant during this reporting period. In South Asia, influenza activity with mainly influenza A(H1N1) remained elevated.

Follow the link for the [WHO influenza surveillance reports](https://www.who.int/influenza/updates).

Avian Influenza Update:
Human infections with avian influenza viruses

WHO has published its monthly updated risk assessment of human infections with avian influenza viruses [Influenza at the human-animal interface](https://www.who.int/influenza/animal_influenza/en/) as of 16 March 2017. This report provides updated information on human cases of infection with H5 and H7 clade viruses and outbreaks among animals.

The overall risk assessment for these viruses remains unchanged. Whenever avian influenza viruses are circulating in poultry, sporadic infections and small clusters of human cases are possible in people exposed to infected poultry or contaminated environments, therefore sporadic human cases would not be unexpected.

For H7N9, WHO has noted current evidence suggests that this virus has not acquired the ability of sustained transmission among humans but it is possible that limited human-to-human transmission may have occurred where there was unprotected close contact with symptomatic human cases.

Other sources of information on avian influenza and the risk of human infection include:

- US CDC [Avian influenza](https://www.cdc.gov/flu/avianflu/index.htm)
- European CDC (ECDC) [Avian influenza](https://ecdc.europa.eu/)

7. Composition of 2017 Australian influenza vaccines

The WHO Consultation on the Composition of Influenza Vaccines for the 2017 Southern Hemisphere was held in Geneva on 26-28 September 2016.

Following the Consultation, WHO announced its recommendations for the composition of trivalent vaccine for use in the 2017 Southern Hemisphere influenza season as follows:

- an A/Michigan/45/2015 (H1N1)pdm09-like virus;
- an A/Hong Kong/4801/2014 (H3N2)-like virus;
- a B/Brisbane/60/2008-like virus (Victoria lineage)

WHO also recommended that quadrivalent vaccines containing two influenza B viruses and should contain the above three viruses and a B/Phuket/3073/2013-like virus.
Of note, there has been replacement of the A/California/7/2009 (H1N1)pdm09-like virus component with an A/Michigan/45/2015 (H1N1)pdm09-like virus in the vaccine recommendations, the first time the recommended A(H1N1) strain has changed since 2010.

All influenza vaccination included in the Australian National Immunisation Influenza Program in 2017 are quadrivalent vaccines.

More details about the most recent influenza vaccine recommendations can be found at:

The WHO consultation on the composition of influenza vaccines for the Northern Hemisphere 2017-18 influenza season was held in February 2017. The recommended composition was unchanged from the composition recommended for the 2017 Southern Hemisphere vaccines. Information about the Northern Hemisphere vaccine recommendations can be found at: WHO | Recommended composition of influenza virus vaccines for use in the 2017-2018 northern hemisphere influenza season.